Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.050
Filtrar
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 516-522, jul. 2024. graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1538029

RESUMO

This article aimed to discuss the protection of trans - nerolidol on vascular endothelial cells (ECs) injured by lipopolysac charides. ECs were divided into four groups: normal, model, low and high dose trans - nerolidol treatment groups. The cell survival rate and the contents of NO in the cell culture supernatant were determined. The protein expression and transcript level of pe roxisome proliferator - activated receptor - γ (PPARγ), endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase (iNOS) were determined by western blotting and RT - PCR respectively. Compared with the normal group, cell livability, protein e xpression and mRNA transcript level of PPARγ and eNOS decreased, NO contents, protein expression and mRNA transcript tlevel of iNOS increased in model group significantly. Compared with model group, all the changes recovered in different degree in treatmen t groups. Hence, it was concluded that trans - nerolidol can alleviate the ECs injuryby the regulation of iNOS/eNOS through activating PPARγ in a dose - dependent manner


Este artículo tiene como objetivo discutir la protección del trans - nerolidol en las células endoteliales vasculares (CE) dañadas por lipopolisacáridos. Las CE se di vidieron en cuatro grupos: normal, modelo, grupos de tratamiento con trans - nerolidol de baja y alta dosis. Se determinó la tasa de supervivencia de las células y los contenidos de óxido nítrico (NO) en el sobrenadante del cultivo celular. La expresión de p roteínas y el nivel de transcripción del receptor activado por proliferadores de peroxisomas - γ (PPARγ), el óxido nítrico sint et asa endotelial (eNOS) y el óxido nítrico sint et asa inducible (iNOS) se determinaron mediante western blot y RT - PCR, respectivamen te. En comparación con el grupo normal, la viabilidad celular, la expresión de proteínas y el nivel de transcripción de PPARγ y eNOS disminuyeron, los contenidos de NO, la expresión de proteínas y el nivel de transcripción de iNOS aumentaron significativam ente en el grupo modelo. En comparación con el grupo modelo, todos los cambios se recuperaron en diferentes grados en los grupos de tratamiento. Por lo tanto, se concluyó que el trans - nerolidol puede aliviar el daño en las CE regulando iNOS/eNOS a través d e la activación de PPARγ de manera dependiente de la dosis.


Assuntos
Sesquiterpenos/farmacologia , Lipopolissacarídeos/farmacologia , Células Endoteliais/efeitos dos fármacos
2.
Int J Gen Med ; 17: 1509-1519, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660143

RESUMO

Purpose: Endothelial dysfunction is a key mechanism in the development of hypertension and is closely linked to impairment of endothelial nitric oxide synthase (eNOS) and hyperhomocysteinemia. Genetic polymorphisms of eNOS (rs1799983 and rs2070744) are strongly associated with the risk of hypertension in individuals of Asian ethnicities. This study aimed to investigate the relationship between these polymorphisms and the risk of hypertension associated with homocysteine levels. Participants and Methods: For this cross-sectional study, we enrolled 370 Thai men aged 40-60 years from the Electricity Generating Authority of Thailand cohort study for both variants genotyping by TaqMan allelic discrimination analysis. Clinical, anthropometric, and biochemical parameters were also analyzed. Results: In the high blood pressure group (n = 267), systolic and diastolic blood pressure and triglyceride levels were higher in those with homocysteine levels ≥ 15 µmol/L than in those with homocysteine levels < 15 µmol/L (p < 0.05). Significant risk of hypertension was found in GG and GT of rs1799983 (G894T), and in TT and TC of rs2070744 (T-786C), with higher ORs in heterozygous genotypes (all p values < 0.05). Further evaluation of the interactions between SNPs and HCY revealed that individuals with the GT or TC genotype, together with hyperhomocysteinemia, had an increased risk of hypertension (all p<0.05). Conclusion: eNOS variants rs1799983 and rs2070744 may be risk factors for hypertension linked to hyperhomocysteinemia. These findings provide potentially useful healthcare strategies for the management of hypertension.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38583870

RESUMO

BACKGROUND: Autophagy can have either beneficial or detrimental effects on various heart diseases. Pharmacological interventions improve cardiac function, which is correlated with enhanced autophagy. To assess whether a xanthine derivative (KMUP-3) treatment coincides with enhanced autophagy while also providing cardio-protection, we investigated the hypothesis that KMUP-3 treatment activation of autophagy through PI3K/Akt/eNOS signalling offered cardioprotective properties. METHODS: The pro-autophagic effect of KMUP-3 was performed in a neonatal rat model targeting cardiac fibroblasts and cardiomyocytes, and by assessing the impact of KMUP-3 treatment on cardiotoxicity, we used antimycin A-induced cardiomyocytes. RESULTS: As determined by transmission electron microscopy observation, KMUP-3 enhanced autophagosome formation in cardiac fibroblasts. Furthermore, KMUP-3 significantly increased the expressions of autophagy-related proteins, LC3 and Beclin-1, both in a time- and dose-dependent manner; moreover, the pro-autophagy and nitric oxide enhancement effects of KMUP-3 were abolished by inhibitors targeting eNOS and PI3K in cardiac fibroblasts and cardiomyocytes. Notably, KMUP-3 ameliorated cytotoxic effects induced by antimycin A, demonstrating its protective autophagic response. CONCLUSION: These findings enable the core pathway of PI3K/Akt/eNOS axis in KMUP-3-enhanced autophagy activation and suggest its principal role in safeguarding against cardiotoxicity.

4.
BMC Cardiovasc Disord ; 24(1): 176, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519897

RESUMO

BACKGROUND: The endothelial nitric oxide synthase (eNOS) gene deficiency is known to cause impaired coronary vasodilating capability in animal models. In the general clinical population, the eNOS gene polymorphisms, able to affect eNOS activity, were associated with cardiometabolic risk features and prevalence of coronary artery disease (CAD). AIM: To investigate the association of eNOS Glu298Asp gene polymorphism, cardiometabolic profile, obstructive CAD and inducible myocardial ischemia in patients with suspected stable CAD. METHODS: A total of 506 patients (314 males; mean age 62 ± 9 years) referred for suspected CAD was enrolled. Among these, 325 patients underwent stress ECG or cardiac imaging to assess the presence of inducible myocardial ischemia and 436 patients underwent non-invasive computerized tomography or invasive coronary angiography to assess the presence of obstructive CAD. Clinical characteristics and blood samples were collected for each patient. RESULTS: In the whole population, 49.6% of patients were homozygous for the Glu298 genotype (Glu/Glu), 40.9% heterozygotes (Glu/Asp) and 9.5% homozygous for the 298Asp genotype (Asp/Asp). Obstructive CAD was documented in 178/436 (40.8%) patients undergoing coronary angiography while myocardial ischemia in 160/325 (49.2%) patients undergoing stress testing. Patients with eNOS Asp genotype (Glu/Asp + Asp/Asp) had no significant differences in clinical risk factors and in circulating markers. Independent predictors of obstructive CAD were age, gender, obesity, and low HDL-C. Independent predictors of myocardial ischemia were gender, obesity, low HDL-C and Asp genotype. In the subpopulation in which both stress tests and coronary angiography were performed, the Asp genotype remained associated with increased myocardial ischemia risk after adjustment for obstructive CAD. CONCLUSION: In this population, low-HDL cholesterol was the only cardiometabolic risk determinant of obstructive CAD. The eNOS Glu298Asp gene polymorphism was significantly associated with inducible myocardial ischemia independently of other risk factors and presence of obstructive CAD.


Assuntos
Doença da Artéria Coronariana , Isquemia Miocárdica , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Artérias , HDL-Colesterol , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/genética , Genótipo , Isquemia Miocárdica/diagnóstico , Isquemia Miocárdica/epidemiologia , Isquemia Miocárdica/genética , Óxido Nítrico Sintase Tipo III/genética , Obesidade , Polimorfismo Genético , Fatores de Risco
5.
Phytomedicine ; 128: 155557, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547622

RESUMO

BACKGROUND: In this study, we investigated the protective effects of alizarin (AZ) on endothelial dysfunction (ED). AZ has inhibition of the type 2 diabetes mellitus (T2DM)-induced synthesis of thrombospondin 1 (THBS1). Adenosine 5'-monophosphate- activated protein kinase (AMPK), particularly AMPKα2 isoform, plays a critical role in maintaining cardiac homeostasis. PURPOSE: The aim of this study was to investigate the ameliorative effect of AZ on vascular injury caused by T2DM and to reveal the potential mechanism of AZ in high glucose (HG)-stimulated human umbilical vein endothelial cells (HUVECs) and diabetic model rats. STUDY DESIGN: HUVECs, rats and AMPK-/- transgenic mice were used to investigate the mitigating effects of AZ on vascular endothelial dysfunction caused by T2DM and its in vitro and in vivo molecular mechanisms. METHODS: In type 2 diabetes mellitus rats and HUVECs, the inhibitory effect of alizarin on THBS1 synthesis was verified by immunohistochemistry (IHC), immunofluorescence (IF) and Western blot (WB) so that increase endothelial nitric oxide synthase (eNOS) content in vitro and in vivo. In addition, we verified protein interactions with immunoprecipitation (IP). To probe the mechanism, we also performed AMPKα2 transfection. AMPK's pivotal role in AZ-mediated prevention against T2DM-induced vascular endothelial dysfunction was tested using AMPKα2-/- mice. RESULTS: We first demonstrated that THBS1 and AMPK are targets of AZ. In T2DM, THBS1 was robustly induced by high glucose and inhibited by AZ. Furthermore, AZ activates the AMPK signaling pathway, and recoupled eNOS in stressed endothelial cells which plays a protective role in vascular endothelial dysfunction. CONCLUSIONS: The main finding of this study is that AZ can play a role in different pathways of vascular injury due to T2DM. Mechanistically, alizarin inhibits the increase in THBS1 protein synthesis after high glucose induction and activates AMPKα2, which increases NO release from eNOS, which is essential in the prevention of vascular endothelial dysfunction caused by T2DM.

6.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542516

RESUMO

Acute kidney injury (AKI) is a serious health concern with high morbidity and high mortality worldwide. Recently, sexual dimorphism has become increasingly recognized as a factor influencing the severity of the disease. This study explores the gender-specific renoprotective pathways in αMUPA transgenic mice subjected to AKI. αMUPA transgenic male and female mice were subjected to ischemia-reperfusion (I/R)-AKI in the presence or absence of orchiectomy, oophorectomy, and L-NAME administration. Blood samples and kidneys were harvested 48 h following AKI for the biomarkers of kidney function, renal injury, inflammatory response and intracellular pathway sensing of or responding to AKI. Our findings show differing responses to AKI, where female αMUPA mice were remarkably protected against AKI as compared with males, as was evident by the lower SCr and BUN, normal renal histologically and attenuated expression of NGAL and KIM-1. Moreover, αMUPA females did not show a significant change in the renal inflammatory and fibrotic markers following AKI as compared with wild-type (WT) mice and αMUPA males. Interestingly, oophorectomized females eliminated the observed resistance to renal injury, highlighting the central protective role of estrogen. Correspondingly, orchiectomy in αMUPA males mitigated their sensitivity to renal damage, thereby emphasizing the devastating effects of testosterone. Additionally, treatment with L-NAME proved to have significant deleterious impacts on the renal protective mediators, thereby underscoring the involvement of eNOS. In conclusion, gender-specific differences in the response to AKI in αMUPA mice include multifaceted and keen interactions between the sex hormones and key biochemical mediators (such as estrogen, testosterone and eNOS). These novel findings shed light on the renoprotective pathways and mechanisms, which may pave the way for development of therapeutic interventions.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Camundongos , Masculino , Feminino , Animais , Camundongos Transgênicos , NG-Nitroarginina Metil Éster , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Rim/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Estrogênios , Testosterona , Camundongos Endogâmicos C57BL
7.
Mol Cell Endocrinol ; 586: 112197, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462124

RESUMO

Polymorphisms located within NOS3 gene have been investigated as susceptibility variants for diabetic nephropathy (DN) in type 2 diabetes mellitus (T2DM) in a large number of studies. However, these previous articles yielded inconsistent results and we aimed at elucidating the impact of NOS3 variants on DN risk in T2DM by conducting an updated systematic data synthesis. A total of 36 studies (12,807 participants) were selected for qualitative data synthesis, while 33 records with 11,649 subjects were included in the meta-analysis. The pooled analysis demonstrated the association of minor alleles of rs2070744 and rs1799983 with an increased susceptibility to DN (P < 0.001 and P = 0.015 for allelic model, respectively). For both of these variants, a significant effect of subgrouping according to ethnicity was found. Rs869109213 displayed an association with DN susceptibility, with pooled effect measures indicating a predisposing effect of the minor allele a (Prec = 0.002, ORrec = 1.960, 95%CI 1.288-2.983; Paavs. bb = 0.001, ORaavs. bb = 2.014, 95%CI 1.316-3.083). These findings support the effects of NOS3 variants on the risk of developing DN in T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/genética , Diabetes Mellitus Tipo 2/genética , Óxido Nítrico Sintase Tipo III/genética , Polimorfismo Genético , Óxido Nítrico Sintase/genética , Predisposição Genética para Doença , Estudos de Casos e Controles , Polimorfismo de Nucleotídeo Único/genética , Genótipo
8.
Exp Cell Res ; 437(1): 113998, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513962

RESUMO

Plasma saturated free fatty acid (FFA)-induced endothelial dysfunction (ED) contributes to the pathogenesis of atherosclerosis and cardiovascular diseases. However, the mechanism underlying saturated FFA-induced ED remains unclear. This study demonstrated that palmitic acid (PA) induced ED by activating the NADPH oxidase (NOX)/ROS signaling pathway to activate protein phosphatase 4 (PP4) and protein phosphatase 2A (PP2A), thereby reducing endothelial nitric oxide synthase (eNOS) phosphorylation at Ser633 and Ser1177, respectively. Okadaic acid (OA) and fostriecin (FST), which are inhibitors of PP2A, inhibited the PA-induced decreases in eNOS phosphorylation at Ser633 and Ser1177. The antioxidants N-acetylcysteine (NAC) and apocynin (APO) or knockdown of gp91phox or p67phox (NOX subunits) restored PA-mediated downregulation of PP4R2 protein expression and eNOS Ser633 phosphorylation. Knockdown of the PP4 catalytic subunit (PP4c) specifically increased eNOS Ser633 phosphorylation, while silencing the PP2A catalytic subunit (PP2Ac) restored only eNOS Ser1177 phosphorylation. Furthermore, PA dramatically decreased the protein expression of the PP4 regulatory subunit R2 (PP4R2) but not the other regulatory subunits. PP4R2 overexpression increased eNOS Ser633 phosphorylation, nitric oxide (NO) production, cell migration and tube formation but did not change eNOS Ser1177 phosphorylation levels. Coimmunoprecipitation (Co-IP) suggested that PP4R2 and PP4c interacted with the PP4R3α and eNOS proteins. In summary, PA decreases PP4R2 protein expression through the Nox/ROS pathway to activate PP4, which contributes to ED by dephosphorylating eNOS at Ser633. The results of this study suggest that PP4 is a novel therapeutic target for ED and ED-associated vascular diseases.


Assuntos
Óxido Nítrico Sintase Tipo III , Fosfoproteínas Fosfatases , Doenças Vasculares , Humanos , Fosforilação , Óxido Nítrico Sintase Tipo III/metabolismo , Ácido Palmítico/farmacologia , Serina/metabolismo , Espécies Reativas de Oxigênio , Células Cultivadas , Proteína Fosfatase 2/metabolismo , Óxido Nítrico/metabolismo
9.
Biochem Soc Trans ; 52(2): 947-959, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38526159

RESUMO

Caveolin-1 (Cav1) is a 22 kDa intracellular protein that is the main protein constituent of bulb-shaped membrane invaginations known as caveolae. Cav1 can be also found in functional non-caveolar structures at the plasma membrane called scaffolds. Scaffolds were originally described as SDS-resistant oligomers composed of 10-15 Cav1 monomers observable as 8S complexes by sucrose velocity gradient centrifugation. Recently, cryoelectron microscopy (cryoEM) and super-resolution microscopy have shown that 8S complexes are interlocking structures composed of 11 Cav1 monomers each, which further assemble modularly to form higher-order scaffolds and caveolae. In addition, Cav1 can act as a critical signaling regulator capable of direct interactions with multiple client proteins, in particular, the endothelial nitric oxide (NO) synthase (eNOS), a role believed by many to be attributable to the highly conserved and versatile scaffolding domain (CSD). However, as the CSD is a hydrophobic domain located by cryoEM to the periphery of the 8S complex, it is predicted to be enmeshed in membrane lipids. This has led some to challenge its ability to interact directly with client proteins and argue that it impacts signaling only indirectly via local alteration of membrane lipids. Here, based on recent advances in our understanding of higher-order Cav1 structure formation, we discuss how the Cav1 CSD may function through both lipid and protein interaction and propose an alternate view in which structural modifications to Cav1 oligomers may impact exposure of the CSD to cytoplasmic client proteins, such as eNOS.


Assuntos
Caveolina 1 , Transdução de Sinais , Caveolina 1/metabolismo , Caveolina 1/química , Humanos , Animais , Óxido Nítrico Sintase Tipo III/metabolismo , Cavéolas/metabolismo , Microscopia Crioeletrônica , Domínios Proteicos , Membrana Celular/metabolismo
10.
Heliyon ; 10(6): e27160, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38509953

RESUMO

Objective: Retinal vein occlusion (RVO) can lead to visual impairment, but the development of collateral vessels can sometimes mitigate significant damage. This study aimed to investigate the relationship between collateral vessels and hypertension, the most common underlying condition associated with RVO, by comparing spontaneously hypertensive rats (SHRs) and wild-type Wister rats (WWRs). We also examined the differences between WWRs and SHRs in terms of sphingosine 1-phosphate receptor 1 (S1PR1) expression and its product nitric oxide synthase 3 (NOS3) expression, which are involved in the formation of collateral vessels after vascular occlusion. Methods: Laser photocoagulation (PC) was used to occlude one randomly selected retinal vein in WWRs and SHRs, and the area surrounding the occluded vessel was examined using optical coherence tomography angiography. If reperfusion of the occluded vessel occurred within 2 weeks, the vessel was re-occluded repeatedly by PC. The number of eyes with successfully occluded vessels accompanied by collateral vessels was recorded. Then, WWRs and SHRs were divided into the following four groups: 1) control (no treatment), 2) vehicle (20% DMSO), 3) S1PR1 agonist (2 mg/mL SEW2871), and 4) S1PR1 antagonist (0.25 mg/mL VPC 23019) groups. The drugs were administered intravitreally in all groups except the control. The number of laser shots required for successful RVO was recorded. Histological evaluation and quantitative real-time PCR of S1PR1 and NOS3 were performed to elucidate the mechanisms underlying collateral vessel formation. Results: The proportion of eyes achieving successful vein occlusion was lower in SHRs (4/12 eyes, 33.3%) than in WWRs (8/10 eyes, 80%, p = 0.043). NOS3 expression at 6 h after PC was significantly higher in WWRs than in SHRs (p = 0.021). In WWRs treated with SEW2871, vein occlusion failed in 7 of 10 eyes (70%). The expression of NOS3 was significantly higher in the SEW2871 treatment group than in the untreated group (p < 0.001). Furthermore, NOS3 expression was significantly higher after SEW2871 treatment in WWRs than in SHRs (p = 0.011). Conclusion: In hypertensive environments, collateral vessels are less likely to develop, and S1PR1 may be involved in this phenomenon.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38415447

RESUMO

BACKGROUND: A high-salt diet is a leading dietary risk factor for elevated blood pressure and cardiovascular disease. Quercetin reportedly exhibits cardioprotective and antihypertensive therapeutic effects. OBJECTIVES: The objective of this study is to examine the effect of quercetin on high-salt dietinduced elevated blood pressure in Dahl salt-sensitive (SS) rats and determine the underlying molecular mechanism. MATERIALS AND METHODS: Rats of the Dahl SS and control SS-13 BN strains were separated into five groups, SS-13 BN rats fed a low-salt diet (BL group), SS-13 BN rats fed a high-salt diet (BH group), Dahl SS rats fed a low-salt diet (SL group), Dahl SS rats fed a high-salt diet (SH group), and SH rats treated with quercetin (SHQ group). Blood pressure was checked three weeks into the course of treatment, and biochemical markers in the urine and serum were examined. Additionally, western blot was done to evaluate the sirtuin 1 (SIRT1) and endothelial nitric oxide synthase (eNOS) expression levels. Immunohistochemical analysis was performed to verify SIRT1 levels. RESULTS: We demonstrated that a high-salt diet elevated blood pressure in both SS-13 BN and Dahl SS rats, and quercetin supplementation alleviated the altered blood pressure. Compared with the SH group, quercetin significantly elevated the protein expression of SIRT1 and eNOS. Immunohistochemistry results further confirmed that quercetin could improve the protein expression of SIRT1. CONCLUSION: Quercetin reduced blood pressure by enhancing the expression of SIRT1 and eNOS in Dahl SS rats fed a high-salt diet.

12.
Environ Pollut ; 346: 123600, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38369087

RESUMO

Emerging literatures have concentrated on the association between cardiovascular diseases risk of typical endocrine disruptor bisphenols, which also put forward the further studies need respect to the potential mechanism. Herein, we investigated the endothelial dysfunction effects of bisphenols and brominated bisphenols involved in aortic pathological structure, endothelial nitric oxide synthase (eNOS) protein phosphorylation, synthase activity and nitric oxide (NO) production in human umbilical vein endothelial cells (HUVECs) and C57BL/6 mice. Bisphenol A (BPA) and bisphenol S (BPS) increased NO production by 85.7% and 68.8% at 10-6 M level in vitro and 74.3%, 41.5% in vivo, respectively, while tetrabromobisphenol S (TBBPS) significantly inhibited NO by 55.7% at 10-6 M in vitro and 28.9% in vivo at dose of 20 mg/kg BW/d. Aortic transcriptome profiling revealed that the process of 'regulation of NO mediated signal transduction' was commonly induced. The mRNA and protein expression of phosphorylated eNOS at Ser1177 were promoted by BPA and BPS but decreased by TBBPA and TBBPS in HUVECs. Phosphorylation and enzymatic activity of eNOS were significantly increased by 43.4% and 13.8% with the treatment of BPA and BPS at 10-7 M, but decreased by 16.9% after exposure to TBBPS at 10-6 M in vitro. Moreover, only TBBPS was observed to increase aorta thickness significantly in mice and induce endothelial dysfunction. Our work suggests that bisphenols and brominated bisphenols may exert adverse outcome on vascular health differently in vitro and in vivo, and emphasizes areas of public health concern similar endocrine disruptors vulnerable on the vascular endothelial function.


Assuntos
Compostos Benzidrílicos , Óxido Nítrico Sintase Tipo III , Óxido Nítrico , Fenóis , Bifenil Polibromatos , Humanos , Camundongos , Animais , Óxido Nítrico Sintase Tipo III/metabolismo , Camundongos Endogâmicos C57BL , Células Endoteliais da Veia Umbilical Humana , Óxido Nítrico/metabolismo
13.
J Am Heart Assoc ; 13(4): e030054, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38348774

RESUMO

BACKGROUND: This study investigated whether gCTRP9 (globular C1q/tumor necrosis factor-related protein-9) could restore high-glucose (HG)-suppressed endothelial progenitor cell (EPC) functions by activating the endothelial nitric oxide synthase (eNOS). METHODS AND RESULTS: EPCs were treated with HG (25 mmol/L) and gCTRP9. Migration, adhesion, and tube formation assays were performed. Adiponectin receptor 1, adiponectin receptor 2, and N-cadherin expression and AMP-activated protein kinase, protein kinase B, and eNOS phosphorylation were measured by Western blotting. eNOS activity was determined using nitrite production measurement. In vivo reendothelialization and EPC homing assays were performed using Evans blue and immunofluorescence in mice. Treatment with gCTRP9 at physiological levels enhanced migration, adhesion, and tube formation of EPCs. gCTRP9 upregulated the phosphorylation of AMP-activated protein kinase, protein kinase B, and eNOS and increased nitrite production in a concentration-dependent manner. Exposure of EPCs to HG-attenuated EPC functions induced cellular senescence and decreased eNOS activity and nitric oxide synthesis; the effects of HG were reversed by gCTRP9. Protein kinase B knockdown inhibited eNOS phosphorylation but did not affect gCTRP9-induced AMP-activated protein kinase phosphorylation. HG impaired N-cadherin expression, but treatment with gCTRP9 restored N-cadherin expression after HG stimulation. gCTRP9 restored HG-impaired EPC functions through both adiponectin receptor 1 and N-cadherin-mediated AMP-activated protein kinase /protein kinase B/eNOS signaling. Nude mice that received EPCs treated with gCTRP9 under HG medium showed a significant enhancement of the reendothelialization capacity compared with those with EPCs incubated under HG conditions. CONCLUSIONS: CTRP9 promotes EPC migration, adhesion, and tube formation and restores these functions under HG conditions through eNOS-mediated signaling mechanisms. Therefore, CTRP9 modulation could eventually be used for vascular healing after injury.


Assuntos
Adiponectina , Células Progenitoras Endoteliais , Glicoproteínas , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Progenitoras Endoteliais/metabolismo , Complemento C1q/metabolismo , Complemento C1q/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Citocinas/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Camundongos Nus , Receptores de Adiponectina/metabolismo , Nitritos , Movimento Celular , Glucose/farmacologia , Glucose/metabolismo , Caderinas/metabolismo , Fatores de Necrose Tumoral/metabolismo , Fatores de Necrose Tumoral/farmacologia , Óxido Nítrico/metabolismo , Células Cultivadas
14.
Heliyon ; 10(2): e24600, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312663

RESUMO

Human cardiac microvascular endothelial cells (HCMECs) are sensitive to ischemia and vulnerable to damage during reperfusion. The release of damage-associated molecular patterns (DAMPs) during reperfusion induces additional tissue damage. The current study aimed to identify early protein DAMPs in human cardiac microvascular endothelial cells subjected to ischemia-reperfusion injury (IRI) using a proteomic approach and their effect on endothelial cell injury. HCMECs were subjected to 60 min of simulated ischemia and 6 h of reperfusion, which can cause lethal damage. DAMPs in the culture media were subjected to liquid chromatography-tandem mass spectrometry proteomic analysis. The cells were treated with endothelial IRI-derived DAMP medium for 24 h. Endothelial injury was assessed by measuring lactate dehydrogenase activity, morphological features, and the expression of endothelial cadherin, nitric oxide synthase (eNOS), and caveolin-1. The top two upregulated proteins, DNAJ homolog subfamily B member 11 and pyrroline-5-carboxylate reductase 2, are promising and sensitive predictors of cardiac microvascular endothelial damage. HCMECs expose to endothelial IRI-derived DAMP, the lactate dehydrogenase activity was significantly increased compared with the control group (10.15 ± 1.03 vs 17.67 ± 1.19, respectively). Following treatment with endothelial IRI-derived DAMPs, actin-filament dysregulation, and downregulation of vascular endothelial cadherin, caveolin-1, and eNOS expressions were observed, along with cell death. In conclusion, the early protein DAMPs released during cardiac microvascular endothelial IRI could serve as novel candidate biomarkers for acute myocardial IRI. Distinct features of impaired plasma membrane integrity can help identify therapeutic targets to mitigate the detrimental consequences mediated of endothelial IRI-derived DAMPs.

15.
Indian J Clin Biochem ; 39(1): 92-100, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223012

RESUMO

The aim of this study is to determine the roles of eNOS gene variations in BCA development. Our study included 91 patients diagnosed with BCA and 91 healthy controls. eNOS 4VNTR (4a/b), T786C and G894T gene variations genotype distributions were determined by PCR and RFLP methods. The significant difference was determined between these groups in terms of eNOS T786C and eNOS G894T gene variations genotype distributions (p < 0.05). TT genotype for G894T gene variation and CC genotype for T786C gene variation were detected higher in patients. The CC genotype of T786C gene variation was detected significantly higher in male patients than in male controls (p < 0.05). In addition, aa-TT, ab-TT, bb-TT haplotypes of 4VNTR (4a/b)-G894T gene variations, aa-CC, ab-CC, bb-CC haplotypes of 4VNTR (4a/b)-T786C gene variations and TT-TT, TT-CC, TT-CT, GG-CC, GT-CC haplotypes of G894T-T786C gene variations were observed in patient group more than control group. The significant difference was detected between these groups in terms of eNOS (G894T-T786C) haplotypes (p < 0.05). In our study, eNOS T786C and eNOS G894T gene variations were determined important genetic risk factor in the Thrace population of Turkey.

16.
Biol Chem ; 405(2): 119-128, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36869860

RESUMO

Salvia miltiorrhiza (Salvia miltiorrhiza) root, as a traditional herb, is widely applied to pharmacotherapy for vascular system disease. In this study, we elucidate the therapy mechanism of Salvia miltiorrhiza by using a model of hindlimb ischemia. Blood perfusion measurement showed that intravenous administration of the Water Extract of Salvia miltiorrhiza (WES) could facilitate damaged hindlimb blood flow recovery and blood vessel regeneration. In vitro mRNA screen assay in cultured human umbilical vein endothelial cells (HUVECs) show that WES induced increased NOS3, VEGFA, and PLAU mRNA levels. Endothelial NOS (eNOS) promotor reporter analysis revealed that WES and the major ingredients danshensu (DSS) could enhance eNOS promoter activity. Additionally, we found that WES and its ingredients, including DSS, protocatechuic aldehyde (PAI), and salvianolic acid A (SaA), promoted HUVECs growth by the endothelial cell viability assays. A mechanistic approach confirmed that WES augments HUVECs proliferation through the activation of extracellular signal-regulated kinase (ERK) signal pathway. This study reveals that WES promotes ischemic remodeling and angiogenesis through its multiple principal ingredients, which target and regulate multiple sites of the network of the blood vessel endothelial cell regenerating process.


Assuntos
Salvia miltiorrhiza , Animais , Humanos , Isquemia/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana , Membro Posterior , RNA Mensageiro
17.
Sci China Life Sci ; 67(2): 286-300, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37897614

RESUMO

We previously demonstrated that normal high-density lipoprotein (nHDL) can promote angiogenesis, whereas HDL from patients with coronary artery disease (dHDL) is dysfunctional and impairs angiogenesis. Autophagy plays a critical role in angiogenesis, and HDL regulates autophagy. However, it is unclear whether nHDL and dHDL regulate angiogenesis by affecting autophagy. Endothelial cells (ECs) were treated with nHDL and dHDL with or without an autophagy inhibitor. Autophagy, endothelial nitric oxide synthase (eNOS) expression, miRNA expression, nitric oxide (NO) production, superoxide anion (O2•-) generation, EC migration, and tube formation were evaluated. nHDL suppressed the expression of miR-181a-5p, which promotes autophagy and the expression of eNOS, resulting in NO production and the inhibition of O2•- generation, and ultimately increasing in EC migration and tube formation. dHDL showed opposite effects compared to nHDL and ultimately inhibited EC migration and tube formation. We found that autophagy-related protein 5 (ATG5) was a direct target of miR-181a-5p. ATG5 silencing or miR-181a-5p mimic inhibited nHDL-induced autophagy, eNOS expression, NO production, EC migration, tube formation, and enhanced O2•- generation, whereas overexpression of ATG5 or miR-181a-5p inhibitor reversed the above effects of dHDL. ATG5 expression and angiogenesis were decreased in the ischemic lower limbs of hypercholesterolemic low-density lipoprotein receptor null (LDLr-/-) mice when compared to C57BL/6 mice. ATG5 overexpression improved angiogenesis in ischemic hypercholesterolemic LDLr-/- mice. Taken together, nHDL was able to stimulate autophagy by suppressing miR-181a-5p, subsequently increasing eNOS expression, which generated NO and promoted angiogenesis. In contrast, dHDL inhibited angiogenesis, at least partially, by increasing miR-181a-5p expression, which decreased autophagy and eNOS expression, resulting in a decrease in NO production and an increase in O2•- generation. Our findings reveal a novel mechanism by which HDL affects angiogenesis by regulating autophagy and provide a therapeutic target for dHDL-impaired angiogenesis.


Assuntos
MicroRNAs , Humanos , Camundongos , Animais , MicroRNAs/metabolismo , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Autofagia/genética
18.
Nitric Oxide ; 142: 58-68, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061411

RESUMO

Statin therapy is a cornerstone in the treatment of systemic vascular diseases. However, statins have failed to translate as therapeutics for pulmonary vascular disease. Early pulmonary vascular disease in the setting of congenital heart disease (CHD) is characterized by endothelial dysfunction, which precedes the more advanced stages of vascular remodeling. These features make CHD an ideal cohort in which to re-evaluate the potential pulmonary vascular benefits of statins, with a focus on endothelial biology. However, it is critical that the full gamut of the pleiotropic effects of statins in the endothelium are uncovered. The purpose of this investigation was to evaluate the therapeutic potential of simvastatin for children with CHD and pulmonary over-circulation, and examine mechanisms of simvastatin action on the endothelium. Our data demonstrate that daily simvastatin treatment preserves endothelial function in our shunt lamb model of pulmonary over-circulation. Further, using pulmonary arterial endothelial cells (PAECs) isolated from Shunt and control lambs, we identified a new mechanism of statin action mediated by increased expression of the endogenous Akt1 inhibitor, C-terminal modifying protein (CTMP). Increases in CTMP were able to decrease the Akt1-mediated mitochondrial redistribution of endothelial nitric oxide synthase (eNOS) which correlated with increased enzymatic coupling, identified by increases in NO generation and decreases in NOS-derived superoxide. Together our data identify a new mechanism by which simvastatin enhances NO signaling in the pulmonary endothelium and identify CTMP as a potential therapeutic target to prevent the endothelial dysfunction that occurs in children born with CHD resulting in pulmonary over-circulation.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Doenças Vasculares , Humanos , Criança , Animais , Ovinos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Sinvastatina/metabolismo , Células Endoteliais/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Endotélio/metabolismo , Doenças Vasculares/metabolismo , Óxido Nítrico/metabolismo , Endotélio Vascular/metabolismo
19.
J Med Ultrason (2001) ; 51(1): 39-48, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38052761

RESUMO

PURPOSE: Here we aimed to develop a minimally invasive treatment for ischemic heart disease and demonstrate that low-intensity pulsed ultrasound (LIPUS) therapy improves myocardial ischemia by promoting myocardial angiogenesis in a porcine model of chronic myocardial ischemia. Studies to date determined the optimal treatment conditions within the range of settings available with existing ultrasound equipment and did not investigate a wider range of conditions. METHODS: We investigated a broad range of five parameters associated with ultrasound irradiation conditions that promote expression of endothelial nitric oxide synthase (eNOS), a key molecule that promotes angiogenesis in human coronary artery endothelial cells (HCAEC). RESULTS: Suboptimal irradiation conditions included 1-MHz ultrasound frequency, 500-kPa sound pressure, 20-min total irradiation time, 32-48-[Formula: see text] pulse duration, and 320-[Formula: see text] pulse repetition time. Furthermore, a proposed index, [Formula: see text], calculated as the product of power and the total number of irradiation cycles applied to cells using LIPUS, uniformly revealed the experimental eNOS expression associated with the various values of five parameters under different irradiation conditions. CONCLUSION: We determined the suboptimal ultrasound irradiation conditions for promoting eNOS expression in HCAEC.


Assuntos
Isquemia Miocárdica , Óxido Nítrico Sintase Tipo III , Humanos , Animais , Suínos , Óxido Nítrico Sintase Tipo III/metabolismo , Células Endoteliais/metabolismo , Ondas Ultrassônicas
20.
Angiology ; : 33197231219837, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039959

RESUMO

Despite its unequivocal superiority compared with balloon angioplasty, coronary stenting did not abolish restenosis. We aimed to evaluate the associations between a common single nucleotide polymorphism occurring in endothelial nitric oxide synthase (eNOS) and angiotensin-converting enzyme (ACE) genes and the risk of in-stent restenosis (ISR) of bare metal stents vs drug-eluting stents (BMS vs DES) implanted in Egyptian patients. Two hundred patients who had coronary stenting were divided into group I (n = 98) who received a BMS and group II (n = 102) who received a DES. eNOS and ACE genes polymorphism were analyzed by polymerase chain reaction (PCR). We found that the GA and AA genotypes of the eNOS gene were associated with the ISR with both BMS and DES. However, the ACE gene was not associated with ISR. We concluded that eNOS gene polymorphism is associated with ISR. Hypertension, stent length, and AA genotype of the eNOS gene were found to be independent predictors of the occurrence of ISR after both BMS and DES use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...